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SUMMARY

The insulin/insulin growth factor (IGF) signaling (IIS)
pathway is a key regulator of aging of worms, flies,
mice, and likely humans. Delayed aging by IIS reduc-
tion protects the nematode C. elegans from toxicity
associated with the aggregation of the Alzheimer’s
disease-linked human peptide, Ab. We reduced IGF
signaling in Alzheimer’s model mice and discovered
that these animals are protected from Alzheimer’s-
like disease symptoms, including reduced behav-
ioral impairment, neuroinflammation, and neuronal
loss. This protection is correlated with the hyperag-
gregation of Ab leading to tightly packed, ordered
plaques, suggesting that one aspect of the protec-
tion conferred by reduced IGF signaling is the
sequestration of soluble Ab oligomers into dense
aggregates of lower toxicity. These findings indicate
that the IGF signaling-regulated mechanism that
protects from Ab toxicity is conserved from worms
to mammals and point to the modulation of this
signaling pathway as a promising strategy for the
development of Alzheimer’s disease therapy.

INTRODUCTION

Most cases of Alzheimer’s disease (AD) exhibit sporadic onset

during the seventh decade of life or later, whereas the fewer

mutation-linked, familial cases typically manifest during the fifth

decade. These temporal features, common to numerous neuro-

degenerative diseases, define aging as the major risk factor for

the development of these maladies (Amaducci and Tesco,

1994). The insulin/insulin-like growth factor (IGF) signaling (IIS)

pathway regulates stress resistance, aging and is a life span

determinant. IIS reduction results in stress-resistant, long-lived
worms (Kenyon et al., 1993), flies (Tatar et al., 2001), and mice

(Bluher et al., 2003; Holzenberger et al., 2003) and correlates

with increased longevity of humans (Flachsbart et al., 2009;

Suh et al., 2008; Willcox et al., 2008). Delayed aging, by IIS

reduction, protects worms from proteotoxicity associated with

the aggregation of the Huntington’s disease-associated polyQ

peptide (Morley et al., 2002) and the AD-linked human Ab

peptide (Cohen et al., 2006). However, little is known about

whether this protection from proteotoxicity is conserved from

worms to mammals, and what protective mechanisms may be

operating.

Ab originates from the endoproteolysis of the amyloid

precursor protein (APP) (Glenner and Wong, 1984; Selkoe,

2004). The serine protease BACE (beta amyloid cleaving enzyme)

cleaves APP (Farzan et al., 2000), followed by an intramembrane

cleavage of the resulting fragment by presenilin1 (PS1), an active

component of the g-secretase proteolytic complex (Wolfe et al.,

1999). These events release the Ab family of aggregation-prone

peptides, including Ab1-40 and the highly amyloidogenic Ab1-42.

Although compelling data indicate that Ab aggregation triggers

AD, the mechanism leading to the development of the disease

is unclear (Selkoe, 2004). Recent studies suggest that it is not

fibrils, but small Ab oligomers lead to toxicity in AD model organ-

isms (Cohen et al., 2006; Lesne et al., 2006) and to AD in humans

(Haass and Selkoe, 2007; Shankar et al., 2008).

In the C. elegans Ab model (Ab worms [Link, 1995]), the protec-

tion from human Ab1-42 proteotoxicity conferred by IIS reduction

is dependent upon two transcription factors, heat shock factor 1

(HSF-1), which regulates Ab disaggregation, and DAF-16 (ortho-

log to FOXO in mammals), which facilitates the formation of

larger, less toxic Ab aggregates. Accordingly, Ab worms pro-

tected from Ab toxicity by reduced IIS accumulate more large

Ab aggregates and have fewer oligomers than did their unpro-

tected counterparts with normal IIS (Cohen et al., 2006).

Although reduced IGF signaling extends the life span of mice

(Holzenberger et al., 2003), IGF-1 infusion protects from Ab

toxicity (Carro et al., 2002, 2006), raising the query of whether
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IGF signaling reduction or activation protects from Ab toxicity. To

address this question, we created an AD mouse model with

reduced IGF signaling by crossing a well-established AD

transgenic mouse model (Jankowsky et al., 2001) with long-lived

mice harboring only one Igf1r gene copy (Igf1r+/�mice) (Holzen-

berger et al., 2003).

RESULTS

Creation of Mice with AD Transgenes in the Context
of Reduced IGF-1R Signaling
Igf1r is the mammalian ortholog of the sole worm insulin/IGF

receptor daf-2 (Kimura et al., 1997). Igf1r+/�mice exhibit reduced

IGF-1 signaling, are long-lived, oxidative stress resistant, and

have reduced body size (Holzenberger et al., 2003). The AD

mouse model expresses two AD-linked mutated transgenes,

APPswe (a humanized mouse APP that contains the human Ab

peptide sequence) and human presenilin-1 DE9, both driven by

the mouse prion protein promoter (hereafter referred to as AD

mice) (Jankowsky et al., 2001). The expression of these trans-

genes results in the production of human Ab amyloid, plaque

formation in the brain, and slow, progressive AD-like symptoms

(Jankowsky et al., 2004). The AD-like mice also exhibit age-onset

behavioral impairments, analogous to other AD murine models

(Reiserer et al., 2007). The AD model is less aggressive than

other AD models, exhibiting appearance of Ab plaques in the

brain at 6-7 months of age (Jankowsky et al., 2004). The slow

onset of AD-like symptoms allows for the perturbation of IIS to

examine its role in the age onset requirements of the AD-like

syndrome.

To equalize the genetic background of our mice, we first back-

crossed both the AD and Igf1r+/� mouse strains with wild-type

129 females for three generations, followed by four intercrosses

between the AD and Igf1r+/�mice. Crossing Igf1r+/� with the AD

mice generated offspring of four genotypes (Figure 1A): The orig-

inal parental genotypes, (1) heterozygous Igf1r+/� (Igfr+/�) and (2)

AD mice, which served as internal controls (AD). (3) Congenic

siblings that age naturally due to two Igf1r gene copies but

carrying neither of the AD transgenes. These animals served as

negative internal controls for asymptomatic AD-like disease

and natural IGF-1 signaling (WT). Finally, (4) mice harboring

both AD transgenes and only one Igf1r gene copy served as

the experimental group of focus (AD;Igf1r+/�).

Quantitative polymerase chain reaction (PCR) analysis

revealed that the expression levels of the APPswe transgene

were nearly identical in brains of AD and AD;Igf1r+/� mice

(Figures S1A–S1E available online), indicating that IGF signaling

reduction does not effect the expression of the prion protein

promoter-driven transgenes. The levels of monomeric Ab and

of the C-terminal APP fragment (APP CTF) were also very similar

in AD and AD;Igf1r+/� mice (Figures S1F and S1G). Similarly,

reduced IGF signaling did not affect the endogenous a and b sec-

retases (ADAM17 and BACE, respectively) in mouse brains of all

genotypes (Figure S1H). Together these results indicate that IGF

signaling reduction affected neither the transgene expression

nor the levels of the endogenous APP processing enzymes or

their activity. As expected, both Igf1r+/� and AD;Igf1r+/�mice

were smaller compared with their littermates carrying two
1158 Cell 139, 1157–1169, December 11, 2009 ª2009 Elsevier Inc.
Igf1r copies, indicating reduced IGF-1R signaling (Figure S2A)

(Holzenberger et al., 2003).

Reduced IGF-1R Signaling Reduces the Behavioral
Deficits of AD Mice
Age-onset memory deficiency and impairment of orientation and

locomotion are associated with Ab production in numerous AD

murine models (Jensen et al., 2005; King and Arendash, 2002;

Westerman et al., 2002). We evaluated whether reduced IGF-1

signaling protects mice from Ab-associated behavioral impair-

ments using several behavioral assays. As an initial analysis, we

used eight animals per genotype and followed their performance

in the Morris water maze test at 3, 6, 9, and 12 months of age, and

found the greatest differences among AD, AD;Igf1r+/� animals

and their littermate controls at the 9 and 12 month time points

(Figures S2B and S2C). At 16 months we observed mortality in

the AD group that was not present in the AD;Igf1R+/� mice

(data not shown). Thus, we refined our behavioral analysis to

the 11-15 month of age using a larger cohort of animals.

We measured the learning ability of mice using a Morris water

maze with a cued (visible) platform for four consecutive days. As

previously reported for other AD model mice (Blanchard et al.,

2008; Westerman et al., 2002), the AD mice did not exhibit a

learning deficiency compared to their age-matched WT, Igf1r+/�,

and AD;Igf1r+/� counterparts (Figure 1B, p > 0.05). In order to

test orientation aptitude, we removed the cue from the platform

and recorded the latency time required for mice to locate the

submerged platform for four consecutive days. At days 2, 3,

and 4 of the experiment, AD mice required a significantly (p <

0.05) longer time to find the hidden platform compared to their

WT, Igf1r+/�, and AD;Igf1r+/� counterparts (Figure 1C). This indi-

cates that, like other mouse AD models (Jensen et al., 2005; King

and Arendash, 2002; Westerman et al., 2002), orientation capa-

bilities of AD animals are impaired (swim velocities were nearly

identical for all genotypes; Figure S2D). Lastly, we tested

memory skills by removing the platform from the water maze

and recording the number of the crosses of the previous platform

location (probe trial). AD mice crossed the platform’s previous

location significantly (p < 0.05) fewer times than their WT,

Igf1r+/�, and most importantly AD;Igf1r+/� counterparts, indi-

cating impaired memory. The observation that AD;Igf1r+/�

animals crossed the previous platform location at similar

frequencies compared to WT and Igf1r+/� animals suggests

partial memory restoration (Figure 1D).

Next, we tested the effect of reduced IGF-1 signaling on the

motor skills of AD model mice using a Rota-Rod assay. Much

like the orientation and memory tests, AD mice performed signif-

icantly less well than their age-matched WT, Igf1r+/�, and

AD;Igf1r+/� counterparts in this assay (Figure 1E, p < 0.05).

Collectively, the behavioral data revealed that AD mice have

impaired orientation and memory performance as well as loco-

motion impairment that can be delayed by reduced IGF-1

signaling.

Reduced IGF-1R Signaling Reduces Inflammation
and Neuronal Loss in AD Mice
We asked whether the appearance of biological markers associ-

ated with AD-like disease in mice was also delayed by reduced
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Figure 1. Reduction of IGF Signaling Protects Mice from Ab-Associated Behavioral Impairments

(A) Long-lived mice carrying one Igf1r copy were crossed with transgenic Alzheimer’s disease (AD) model mice harboring two AD-linked mutated genes, APPswe

(containing the human Ab sequence) and PS1DE9 to obtain offspring of four genotypes: (1) wild-type, harboring two Igf1r copies and no AD-linked transgenes

(WT), (2) long-lived mice with one Igf1r copy and no AD-linked transgenes (Igf1r+/�), (3) AD model mice with two Igf1r copies and both AD-linked transgenes (AD),

and (4) mice that harbor one Igf1r copy and both AD-linked transgenes (AD;Igf1r+/�).

(B) Latency time for reaching the cued platform significantly decreased through the acquisition sessions (p = 0, F = 35.49, df = 3) in mice of all genotypes (p > 0.05,

F = 1.84, df = 3, n = 8, 15, 16, 18 for AD, AD;Igf1r+/�, WT, and Igf1r+/�, respectively), suggesting no impairment of learning.

(C) Significant differences were observed among AD mice and their counterparts of the other genotypes in the submerged platform test (p = 5E-4, two-way analysis

of variance [ANOVA], F = 7.71, df = 3,) and across the acquisition days (p = 0.032, F = 2.97, df = 3, n = 8, 15, 16, 18 for AD, AD;Igf1r+/�, WT, and Igf1r+/�, respectively).

AD mice searched for a longer period of time (p < 0.05. Fisher LSD) for the submerged platform. No difference was observed among the three other genotypes.

(D) AD;Igf1r+/� animals crossed the previous platform location significantly (p = 0.024, Kruskal-Wallis, c2 = 9.38, df = 3) more times than their AD counterparts.

(E) Mice older than the age of plaque formation of all genotypes were tested in a Rota Rod task. Animals of the different genotypes significantly differed in their

performance (p < 0.01, one-way ANOVA, df = 3, F = 4.25; n = 31, 32, 29, and 28 individuals for AD, AD;Igfr+/�, Igf1r+/�, and wild-type, respectively). AD mice

performed worst among the four genotypes whereas AD;Igfr+/� mice where partially rescued because they performed significantly better than AD animals (p <

0.05, Tuckey LSD). No statistical difference appeared between AD;Igfr+/� animals and the two control genotypes. In all behavioral tests, 11- to 15-month-old

mice were tested and age-match controlled. Error bars represent mean and standard error of the mean (± SEM).
Cell 139, 1157–1169, December 11, 2009 ª2009 Elsevier Inc. 1159
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Figure 2. Reduced IGF Signaling Reduces Ab-Associated Neuroinflamation

(A–H) Immunohistochemistry using GFAP antibody indicated reduced astrocytosis in brain sections of 12- to 13-month-old AD;Igf1r+/�mice (D and H) compared

with age-matched AD mice (C and G).

(I) Image analysis confirmed the significance of the GFAP signal difference (six mice per genotype and 3 sections per animal were analyzed, p < 0.05; error bars

represent mean ± SEM).
IGF signaling. First we tested whether reactive astrocytosis,

indicative of neuroinflammation, associated with AD in humans

(Mancardi et al., 1983), and with Ab aggregation in brains of

AD model mice (Wirths et al., 2008), was reduced in AD;Igf1r+/�

animals. Utilizing glial fibrillary acidic protein (GFAP) antibodies,

which recognize activated astrocytes (Mancardi et al., 1983),

we found notably less activated astrocytes in the brains of

AD;Igf1r+/� mice compared with age-matched AD mice (Fig-

ure 2). This reduction was apparent both in the cortex and hippo-

campus (Figure 2I), indicating that neuroinflammation is reduced

in AD;Igf1r+/�mice compared with age-matched AD mice. Inter-

estingly, whereas the GFAP signal observed in cortices of AD

mice was largely diffuse, cortical GFAP staining of AD;Igf1r+/�

mice appeared to be focal (compare Figures 2C and 2D), sug-

gesting that neuroinflammation within AD;Igf1r+/� brains is

confined to smaller areas than in the brains of AD animals.

Neuronal loss is another hallmark of AD in humans (Scheff

et al., 1990) and AD model mice (Masliah and Rockenstein,

2000). We used direct stereological visualization and NeuN

immunoreactivity, a marker of neuronal density that declines in

AD mice, and found higher NeuN immunoreactivity in the

cortices of 12- to 13-month-old AD;Igf1r+/� mice compared to

their age-matched AD counterparts (Figure 3). This indicates

that reduced IGF signaling protects from neuronal loss. Similar

neuronal losses were observed in young (4–5 months of age)

and in old (16–17 months) AD but not in AD;Igf1r+/� mice when

compared to age-matched control genotypes (Figure S3).

Reduced synaptic density is an additional hallmark and prob-

ably causative of AD (Hamos et al., 1989). Thus, we used the

synaptic marker synaptophysin to compare synaptic densities

in frontal and hippocampal brain regions of 12- to 13-month-

old mice of all genotypes (Hamos et al., 1989) and found signif-

icantly lower synaptic densities in both brain regions (Figures 3J

and 3K, respectively) of AD animals compared with their

AD;Igf1r+/� counterparts. These observations confirm that IGF
1160 Cell 139, 1157–1169, December 11, 2009 ª2009 Elsevier Inc.
signaling reduction protects mice form Ab-associated neuronal

loss.

Reduced IGF Signaling Promotes the Formation
of Densely Packed Aggregates
To explore the mechanism underlying the protection toward

behavioral deficiencies conferred by reduced IGF signaling, as

well as the protection from inflammation and neuronal loss in

mice ectopically expressing mutated AD-linked transgenes, we

investigated the nature of Ab assemblies in brains of AD and

AD;Igf1r+/� mice. Immunohistochemistry (IHC) and Ab anti-

bodies (clone 6E10) were used to visualize Ab plaques in brain

sections of AD and AD;Igf1r+/� mice (Figure S4). Consistent

with previous results (Jankowsky et al., 2004), Ab plaques could

not be detected in brains of young mice (4-5 months old). A few

plaques were observed in the brains of 8- to 9-month-old

animals, whereas the number of plaques increased in the brains

of 12- to 13-month-old AD and AD;Igf1r+/�mice. No background

staining was observed in brains of WT or Igf1r+/�mice at any age

examined (Figure S4). Thus, reduced IGF signaling has no

apparent effect on the onset of plaque formation. Next we

used the fluorescent dye Thioflavin-S to visualize amyloid within

AD and of AD;Igf1r+/� brains and found nearly identical amyloid

load in cortex and hippocampus regions of both genotypes

(Figure 4A, panel IX). (Colocalization of Thioflavin-S labeling

with the signal of specific Ab antibody [clone 82E1] confirmed

the plaque specificity of Thioflavin-S; Figure S5A). Therefore,

the kinetics of Ab plaque appearance as well as the amyloid

load did not appear to differ between AD and AD;Igf1r+/�

animals.

Closer inspection of the Ab plaques analyzed by IHC revealed

that plaques observed in the cortices of AD;Igf1r+/� animals are

smaller and more condensed than those detected in the cortices

of their age-matched AD counterparts (Figure S4, 12–13 months,

insets). To compare the plaque compaction in the mouse brains,
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Figure 3. Reduced IGF Signaling Protects from Ab-Associated Neuronal and Synaptic Loss

(A–H) Immunohistochemistry using NeuN antibody indicated that neural densities in the brains of 12- to 13-month-old AD;Igf1r+/� (D and H), WT (A and E), and

Igf1r+/� (B and F) mice were comparable, while remarkable neuronal loss was observed in brains of age-matched AD animals (C and G).

(I) Image analysis of the NeuN signals indicated that neural density in both cortices and hippocampuses of AD animals was significantly lower compared with their

age-matched WT counterparts (cortex: p < 0.001, one-way ANOVA, F = 16.03; hippocampus: p < 0.05, Kruskal-Wallis c2 = 9.36, df = 3). No significant difference

was observed among brains of AD;Igf1r+/� and Igf1r+/� mice (six mice per genotype and three sections per animal were analyzed).

(J and K) Immunohistochemistry using synaptophysin antibody revealed that AD;Igf1r+/�mice exhibit significantly higher synaptic densities than their

age-matched AD counterparts in both frontal (J) and hippocampal (K) brain regions (AD n = 7, AD;Igf1r+/� n = 5). Error bars represent mean ± SEM.
we used the highly specific Ab antibody (clone 82E1 that recog-

nizes processed Ab) and measured the Ab immunoreactive

optical density (signal per area) in the different brains. Signifi-

cantly higher Ab immunoreactive optical densities were detected

in brains of AD;Igf1r+/� mice than in AD brains (Figure 4B, panel

IX), suggesting higher compaction of the Ab amyloid plaques

in AD;Igf1r+/� animals.

We also compared the protease sensitivity of plaques of AD

and AD;Igf1r+/� animals by treating brain sections of 12- to 13-

month-old mice with 10 mg/ml proteinase K prior to their labeling

with Ab antibody. A diffuse staining of Ab plaques seen in AD

brain slices compared to the AD;Igf1r+/� brain slices (Figure S5B)

suggested that plaques of AD;Igf1r+/� animals are more

protease resistant than those of AD mice.

To further analyze the amyloid plaque density, we used post-

embedding immunoelectron microscopy, Ab antibodies, and

gold-labeled protein A. Ab fibrils in the cortex of AD;Igf1r+/�

mice appeared to be more densely compacted than those of

their AD counterparts (Figures 5A and S6A). (The lack of immu-
noreactivity in the brain sections of WT and Igf1r+/�

mice confirmed the specificity of the antibody; Figure S6B).

To quantify and compare the density of the amyloid plaques of

AD and AD;Igf1r+/� mouse brains, we developed an electron

microscopy (EM) image-processing algorithm that identifies

the gold particles conjugated to the Ab antibodies (Figures

S6C–S6F), sets a region of interest (ROI) around each particle,

and determines the median signal density within the ROI after

excluding the gold particle (Figures S6G–S6I). ROIs that contain

dense structures will have a lower score value due to less bright

pixels and more dark pixels (i.e., lower gray-scale value).

Cortices of six 12- to 13-month-old AD mice and five AD;

Igf1r+/� mice were visualized by EM and 135 images (34,087

ROIs) of AD and 101 images (26,066 ROIs) of AD;Igf1r+/� were

automatically segmented and analyzed in an unbiased manner.

The distributions of ROI median signal intensities indicate that

plaques of AD;Igf1r+/�mice were significantly (p < 0.038) denser

than those of age-matched AD counterparts (Figure 5B). The

possibility that antibody accessibility to plaques of AD and
Cell 139, 1157–1169, December 11, 2009 ª2009 Elsevier Inc. 1161
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Figure 4. Reduced IGF Signaling Facilitates Ab Hyperaggregation

(A) Thioflavin-S amyloid labeling showed similar Ab plaque burden in brains of AD (panels III and VII) and AD;Igf1r+/� animals (panels IV and VIII). Image analysis

indicated that the Thioflavin-S signals are similar in brains of AD and AD;Igf1r+/�mice, but significantly different from WT and Igf1r+/�mice (panel IX). Six 12- to

13-month-old animals per genotype were analyzed.

(B) Ab plaque signal density was measured using Ab-specific antibody (82E1). The signal per area ratio in brains of AD;Igf1r+/� animals (panels IV and VIII) was

significantly higher (panel IX, p < 0.05) compared with brains of age-matched AD animals (panels III and VII), indicating higher plaque compaction in brains of

AD;Igf1r+/� mice (six mice per genotype and three sections per animal were analyzed; DG, dentate gyrus; NC, neocortex). Error bars represent mean ± SEM.
AD;Igf1r+/� brains differs was assessed by a second algorithm

designed to measure the distance between each gold particle

and its closest neighboring particle. This algorithm is based on

the assumption that lower accessibility would result in sparse

distribution and longer distances among the gold particles. Auto-

matic processing of all plaque images of AD and AD;Igf1r+/�

showed no difference in distances (Figure S6J, p > 0.54), indi-

cating similar antibody accessibilities.

The results obtained using light and electron microscopy

suggest that reduced IGF signaling mediates the assembly of

Ab into more condensed amyloid plaques of lower toxicity. We

used an in vitro kinetic aggregation assay (Cohen et al., 2006)

to assess the relative total amounts of Ab amyloid in equal

volumes of brains of AD and AD;Igf1r+/� mice. When proteinase

K-treated and sonicated (fragments fibrils into a uniform size)

brain homogenate is added to an Ab1-40 aggregation reaction,

the reduction in the time that it takes the aggregation reaction

to reach 50% completion is proportional to the amount of Ab

amyloid fibrils in the tissue (Cohen et al., 2006) (D.D. and J.K.,
1162 Cell 139, 1157–1169, December 11, 2009 ª2009 Elsevier Inc.
unpublished data). The amyloid load was assessed in 4- to

5-month-old and of 12- to 13-month-old AD and AD;Igf1r+/�

mouse brain homogenates (nine animals per genotype). While

no significant difference in aggregate load could be detected

among brain homogenates of young animals (4-5 months old,

Figure S6K), brain extracts of 12- to 13-month-old AD;Igf1r+/�

mice exhibit a higher aggregate load reflected by a shorter t50,

(suggesting accelerated aggregation of Ab1-40) relative to age-

matched AD animals (Figure 5C; p = 0.035). These data demon-

strate that there is more amyloids in an equal volume of 12- to

13-month-old AD;Igf1r+/� brain relative to AD brain. These

results are consistent with the light and electron microscopy

data indicating that protected AD;Igf1r+/� animals have more

densely packed Ab aggregates than AD animals.

Reduced IGF-1 Signaling Increases High-MW
Aggregates and Reduces SDS-Soluble Aggregates
The hyperaggregation of Ab by reduced IGF-1 signaling predicts

lower residual amounts of nonaggregated Ab and/or oligomeric
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Figure 5. Electron Microscopy and In Vitro Kinetic Aggregation Assays Reveal Densely Packed Ab Aggregates in the Brains of AD;Igf1r+/�

Mice

(A) Electron micrographs of immunogold-labeled Ab amyloids in the cortex of AD and AD;Igf1r+/� mouse brains at different ages. Gold-labeled amyloid and

fibrillar Ab structures can be observed in the higher magnification electron micrographs (right panels). The amyloid load similarly increased with age in both

genotypes, but highly ordered, condensed amyloids were present in AD;Igf1r+/� cortices (arrows) but not in the cortices of their AD counterparts. White scale

bars represent 1 mm, black bars 200 nm.

(B) Unbiased automated image processing indicates that median intensities of regions of interest (ROIs) around the gold particles labeling Ab plaques of

AD;Igf1r+/� mice (black) are significantly (p < 0.04) higher than the plaque intensities of age-matched AD animals (red), confirming the higher compaction state

of Ab plaques of AD;Igf1r+/� (135 images [34,087 ROIs] of AD and 101 images [26,066 ROIs] of AD;Igf1r+/� were collected and analyzed).

(C) Using an in vitro kinetic aggreagtion assay to assess fibril load, 12- to 13-month-old AD;Igf1r+/� mouse brain homogenates (blue) accelerated Thioflavin-T

(ThT) monitored in vitro kinetic aggregation significantly (p = 0.035) faster than homogenates of age-matched AD brains (brown), indicating more Ab seeding

competent assemblies in AD;Igf1r+/� mouse brains. Inset: Statistical analysis of results obtained in (C). Error bars represent mean ± SEM.
Ab. Thus, we tested whether more soluble Ab is present in

AD compared to AD;Igf1r+/� brain homogenates. We spun brain

homogenates of seven AD and nine AD;Igf1r+/� 12- to 13-month-
old mice to sediment highly aggregated Ab (10,000 g for 10 min,

4�C) and quantified the lower molecular weight (MW) Ab1-40

and Ab1-42 levels in the soluble fractions using enzyme-linked
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Figure 6. AD Brains Contain More Soluble Ab Oligomers Than Do Brains of AD;Igf1r+/� Animals

(A and B) ELISA assay detected significantly higher amounts of soluble Ab1-40 (A) (p < 0.001) and Ab1-42 (B) (p < 0.005) in brain homogenates of 12- to

13-month-old AD mice compared with brains of age-matched AD;Igf1r+/� animals.

(C and D) Western blot analysis reveals no detectable difference in the amount of SDS-sensitive Ab monomers and small oligomeric assemblies between AD and

AD;Igf1r+/� brain homogenates. Asterisk (*) indicates significant difference from WT or Igfr1+/� mice.

(E) Native SEC indicated that Ab dimers were mainly associated with large structures in brains of 16- to 17-month-old AD;Igf1r+/� mice (panel iii) while more

soluble in brains of age-matched AD animals (panel ii, arrowhead) (panels represent 6 AD and 6 AD;Igf1r+/� animals that were analyzed). Loading of total samples

onto the gel and subsequent WB analysis using 6E10, confirmed equal protein loading onto the column (panel i).

Error bars represent mean ± SEM (A, B, and D).
immunosorbent (ELISA) assays. Ab1-40 (Figure 6A) and Ab1-42

(Figure 6B) levels were significantly (p < 0.001 and p < 0.005,

respectively) lower in the soluble brain supernatant fractions of
1164 Cell 139, 1157–1169, December 11, 2009 ª2009 Elsevier Inc.
AD;Igf1r+/� mice compared to age-matched (12-13 month) AD

animals. No such differences could be detected in the amounts

of soluble Ab1-40 among young mice (Figure S7A, p = 0.126).



Next, we tested whether SDS-soluble Ab oligomeric content

and total quantities were affected by reduced IGF-1 signaling.

Four AD and 4 AD;Igf1r+/� mouse brains of 12- to 13-month-

old mice were subjected to an Ab oligomer preparation protocol

(Bar-On et al., 2006) followed by SDS-PAGE and western blot

(WB) analysis. Surprisingly, the SDS-soluble Ab oligomer

content, and total quantities and amounts of APP were indistin-

guishable in the total brain homogenates (Figures 6C and 6D) of

AD and of AD;Igf1r+/� mice (no oligomers could be detected in

cytosolic fractions; Figure S7B). The difference between the olig-

omer analysis results and the marked difference in the pool of

nonaggregated Ab species among AD;Igf1r+/� and AD animals

observed by the ELISA assays (Figures 6A and 6B) suggests

that the oligomeric Ab assemblies are SDS sensitive. To test

this, we employed size-exclusion chromatography (SEC) to

analyze the native composition of Ab assemblies in the brains

of AD and AD;Igf1r+/� mice. Brains of AD;Igf1r+/� and AD mice

were homogenized and prepared as done for the ELISA assays

to preserve macromolecular structural integrity. Equal amounts

of cleared homogenates (Figure 6E, panel i) were loaded onto

a size-exclusion column, and 20 fractions were collected, lyoph-

ilized, resuspended, and loaded onto SDS gels. Ab assemblies

were visualized using WB and Ab antibody (6E10). Notably,

higher MW assemblies were observed in the AD;Igf1r+/� (see

red reference line) reflecting that they were larger to begin with

and/or that they were more SDS resistant (Figure 6E, panel iii,

fraction 3) (for size exclusion standard see Figure S7, C and D).

The apparent dimer band resulting from SDS mediated denatur-

ation of much larger aggregates is not observable in the

AD;Igf1r+/� SEC fractions (Figure 6E, panel iii), but is observable

in the AD mouse fractions, (Figure 6E, panel ii, fractions 5–7,

open arrowhead).This proposes that in the AD;Igf1r+/� brains,

Ab fibrils are denser, more SDS resistant and more efficiently

prevent the release of potentially toxic oligomeric species. Since

toxicity has been previously associated with the capacity of high-

MW assemblies to fragment (Shankar et al., 2008), prior correla-

tions between the appearance of small SDS-stabilized Ab

species and neurotoxicity may reflect this. The data obtained

from the microscopic analyses, ELISA and in vitro assays

suggest that the conversion of oligomers into denser, higher

MW, more SDS-resistant aggregates is part of the process that

protects against proteotoxicity in the AD;Igf1r+/� animals.

DISCUSSION

By comparing behavioral and pathological aspects of Alz-

heimer’s-like disease in the AD and AD;Igf1r+/� mice, we found

that reduced IGF-1 signaling notably protects mice from proteo-

toxicity associated with the expression of the AD-linked human

peptide, Ab. Light and electron microscopy, as well as in vitro

kinetic aggregation, ELISA, and SEC assays, all indicate that

reduced IGF-1 signaling induces the assembly of Ab into densely

packed, larger fibrillar structures late in life. The observation that

the protected AD;Igf1r+/� mice form SDS stable Ab assemblies,

making it more difficult to generate presumably toxic Ab dimers

(Shankar et al., 2008), suggests that an active mechanism con-

verts oligomers into densely packed aggregates of lower toxicity

that protect the AD;Igf1r+/� mice from proteotoxicity. This
hypothesis is consistent with results obtained in the Ab worm

model, where reduced insulin/IGF signaling protected worms

from Ab-associated toxicity while increasing the formation of

high-MW Ab aggregates (Cohen et al., 2006).

How can increased Ab aggregation protect against proteotox-

icity? Highly aggregated Ab is thought to bear lower toxicity in

comparison to oligomers (Haass and Selkoe, 2007). Accordingly,

enhanced fibrillization can reduce Ab toxicity in an AD-murine

model (Cheng et al., 2007). Furthermore, results from long-

term potentiation assays show that highly aggregated Ab bears

lower toxicity than small oligomers (Shankar et al., 2008). Intrigu-

ingly, the release of small oligomers, most notably dimers, from

large Ab assemblies (fibrils) by chemical extraction increases

toxicity. In support of the hypothesis that accelerated aggrega-

tion can be protective is provided by the discoveries that the

cellular chaperones HSP104 (Shorter and Lindquist, 2004) and

TRiC (Behrends et al., 2006), both known to disrupt toxic protein

aggregates can also mediate protection by accelerating aggre-

gation when the concentration of the aggregating protein ex-

ceeded a threshold level. These studies raise the prospect that

the creation of densely packed, large Ab assemblies protects

AD;Igf1r+/� mice from proteotoxicity by trapping and storing

highly toxic small aggregate structures. If active aggregation

protects from Ab toxicity, such protective mechanism might be

expected to be negatively regulated by the IGF signaling

pathway. In the worm, this activity is mediated, at least in part,

by the FOXO transcription factor DAF-16 (Cohen et al., 2006),

which is negatively regulated by the IIS receptor DAF-2. The

FOXO gene family is highly conserved in mammals, is expressed

in neurons, and is required for neuronal survival under stress

(Lehtinen et al., 2006), suggesting that FOXO transcription

factors are also mediators of the reduced IGF signaling protec-

tive effect in mammals.

It is likely that reduced IGF signaling ameliorates Ab proteotox-

icity by mechanisms in addition to Ab dense fibril formation. The

observation that Igf1r+/� mice exhibit increased resistance to

oxidative stress (Holzenberger et al., 2003) raises the possibility

that reduced IGF-1 signaling enhances the neuronal counter

proteotoxic capabilities by enhancing the levels of enzymes

that protect against oxidative stress proposed to be involved

in AD-associated brain damage (Fukui et al., 2007). This is

supported by the observation that the production of reactive

oxygen species is reduced in brains of Igf1r+/� mice compared

with their WT counterparts following MPTP treatment known to

induce a Parkinson’s disease-like phenotype (Nadjar et al.,

2008). Moreover, overexpression of mitochondrial-targeted

catalase promotes longevity of mice (Schriner et al., 2005). An

alternative model suggests that increased neuronal resilience

associated with reduced IGF signaling is promoted by enhanced

DNA repair capabilities. It is reasonable to speculate that the

histone deacetylase SIRT1, an aging regulator (Ghosh, 2008)

that plays roles in the maintenance of genomic stability (Ober-

doerffer et al., 2008) and regulates HSF1 (Westerheide et al.,

2009), may also be a mediator of the reduced IGF signaling

protective effect in the AD;Igf1r+/� mice. The complexity and

variety of effects mediated by FOXO (Partridge and Bruning,

2008) propose that reduced IGF signaling orchestrates an array

of counter proteotoxic activities including Ab hyperaggregation,
Cell 139, 1157–1169, December 11, 2009 ª2009 Elsevier Inc. 1165



counter oxidation activities, and presumably other yet to be

defined mechanisms (Figure 7). Further research is required to

elucidate whether mammalian FOXO family members play roles

in the protective mechanism toward AD.

The Ab hyperaggregation observed in protected AD;Igf1r+/�

mouse brains suggested that Ab plaques would be visible in

the cortex of these animals at younger ages compared to their

unprotected AD counterparts, however, this was not evident in

our analysis. This is likely due to other mechanisms of protein

homeostasis being effective early in life, such as the disaggre-

gase and degradation activity regulated by HSF-1, as observed

in the worm (Cohen et al., 2006). In this view, the protective

disaggregation/degradation and hyperaggregation mecha-
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(1)
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Figure 7. IGF-1 Signaling Can Play Several Roles in Mitigating the
Toxicity of Ab

The digestion of APP creates Ab monomers that spontaneously aggregate to

form toxic oligomers in vivo. At least two biological mechanisms can detoxify

Ab oligomers: (1) conversion of toxic oligomers into monomers (disaggrega-

tion), and (2) conversion of toxic oligomers into less toxic, larger structures

(active aggregation). Within scenario 1, IGF-1 signaling normally functions to

reduce protein disaggregases. Therefore, reduction of IGF-1 signaling would

result in less oligomers and more monomeric forms of Ab due to the activation

of protein disaggregases. Our results are inconsistent with this scenario

because we find less oligomers, but equal amounts of monomeric Ab. Alterna-

tively, in scenario 2, IGF-1 signaling could normally function to reduce protec-

tive protein aggregases that convert toxic species into larger, less toxic forms.

Thus, reduced IGF-1 signaling elevates aggregase activity that in turn reduces

the load of toxic oligomers and increases the compaction of less toxic fibrils. In

support of scenario 2, we observed less soluble oligomers and highly compact

amyloid plaques in AD;Igf1r+/� animals. Alternatively, (3) IGF-1 signaling could

promote proteotoxicity and neuroinflammation in response to toxic Ab assem-

blies. Our results are also consistent with this proposed mechanism as we

observed much less neuroinflammation in the brains of protected AD;Igf1r+/�

animals. Yet this lower inflammation rate could be directly related to the reduc-

tion of Ab oligomers in these animals by increased aggregases. In scenario 4,

reduction of toxic secondary factors, such as reactive oxygen species (ROS),

might synergize with the production of toxic Ab assemblies to promote

neuronal loss. Consistent with this mechanism, Igf1r+/� mice are much more

resistant to oxidative damage than wild-type mice. Taken together, IGF-1

signaling could impinge at multiple steps on the path to neuronal loss and

neurodegeneration in response to Ab production and none of the interventions

are mutually exclusive. Our data are most consistent with a model in which

reduced IGF-1 signaling reduces the load of toxic Ab structures, presumably

dimers, which results in higher compaction of plaques, reduced neuroinflam-

mation, and reduced neuronal loss.
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nisms may be temporally distinct. Active hyperaggregation

may only be invoked once the primary disaggregation ma-

chinery can no longer effectively clear toxic Ab species as

a consequence of aging or an extrinsic stress. It will be inter-

esting to evaluate whether one or more of the four HSF genes

in the mouse are involved in protecting the brain from Ab

toxicity throughout life, and whether FOXO activity becomes

prominent later in life.

There is an apparent contradiction between the data pre-

sented herein and earlier reports that IGF infusion protects rats

(Carro et al., 2002) and mice (Carro et al., 2006) from Ab proteo-

toxicity and that IGF-1R blockade induced neurological disease

in rats (Carro et al., 2006). The presence of feedback-signaling

events that respond to the sudden increase in IGF concentration

by tuning down the responsiveness of the IGF signaling cascade

over time could explain why IGF infusion is protective against

AD-like pathology (Cohen and Dillin, 2008). This explanation is

supported by many observations. For example, long-lived

female human centenarians have high serum IGF-1 levels, but

low IGF-1R activity, leading to reduced IGF signaling (Suh

et al., 2008). Therefore, high IGF-1 levels do not necessarily

correlate with increased downstream activity over a prolonged

time. Additionally, AD patients have lower than normal serum

insulin concentrations, but higher than normal CSF insulin levels

(Craft et al., 1998). These studies raise the prospect that insulin

and IGF signaling are regulated in a tissue-specific manner,

and suggest that peripheral IGF infusion may lead to reduced

IGF signaling in the brain (Cohen and Dillin, 2008).

The data presented here demonstrate that reduced IGF-1R

signaling results in a profound reduction in the toxicity associ-

ated with Ab expression in the brains of mice. The formation of

larger and denser Ab aggregates that appear to be more SDS

resistant in the AD;Igf1r+/� mice suggests that this is one core

protective activity regulated at least in part by IGF-1R signaling,

much like the disaggregase activity reported previously (Cohen

et al., 2006). The indication that reduced IIS is protective in

nematodes and mammals stresses that manipulation of the

highly conserved IGF signaling pathway, and its downstream

components, is promising for the development of novel neurode-

generation and proteotoxicity therapies.

EXPERIMENTAL PROCEDURES

Mouse Strains and Genotyping

AD-model male mouse expressing a mutant chimeric mouse/human APPswe

and a mutant human presenilin 1 (Delta E9) both driven by the prion protein

promoter was purchased from Jackson laboratory (strain B6C3-Tg [APPswe

PSEN1 dE9] 85Dbo/J, stock number 004462).

Long-Lived, Compromised IIS Mice

Males harboring only one Igf1r copy (S129 background [Holzenberger et al.,

2003]) were obtained from Dr. Jeffery Friedman (TSRI, La Jolla, CA). Males

of both strains were crossed for three generations with ‘‘wild-type’’ 129

females (Jackson laboratories, strain 129Xi/SvJ, stock number 000691), to

set up two separate colonies. Mice of each colony were backcrossed for addi-

tional two generations. Next, Igf1r+/�males were crossed with AD females for

three generations to generate the experimental mice.

DNA was purified from biopsies of mouse tails and subjected to PCR.

APPswe and PS1DE9 were amplified as directed by the Jackson Laboratories.

Igf1r was amplified using the following primers: forward: GTATAGTCCTA

GAGGCCC; reverse: GTTCTGGCAGAAAACATGG.



Western Blot Analysis

Brains were dissected, homogenized, and divided by ultracentrifugation

(100,000 g, 1 hr, 4�C) into cytosolic and membrane (particulate) fractions.

For WB analysis, 15 mg per lane of cytosolic and particulate fractions, assayed

by the Lowry method, were loaded into 10% SDS-PAGE gels and blotted onto

nitrocellulose paper. Blots were incubated O/N with antibodies against APP/

Ab (6E10), Ab (82E1), and C terminus APP (CT-15, courtesy of Dr. Ed Koo).

Next, membranes were incubated with secondary antibodies tagged with

horseradish peroxidase (1:5000, Santa Cruz Biotechnology, Inc., Santa

Cruz, CA), visualized by enhanced chemiluminescence and analyzed with

a Versadoc XL imaging apparatus (Bio-Rad, Hercules, CA). Actin served as

a loading control.

Rota Rod

Locomotion was tested using Rota Rod system (EconoMex, Columbus Instru-

ments, Columbus, OH). Four mice were place at a time on the rotating beam

set to accelerate at 0.2 rpm/s.

Time from start until each mouse fell off was recorded. Each mouse was

trained 1 day for five times prior to the experiment. Each mouse was tested

five times a day, for 4 sequential days (total of 20 measurements/mouse/

age). At least 12 animals (males and females) per genotype were used in

each time point (Supplemental Statistical Data).

Morris Water Maze

The Morris water maze was conducted as described previously (Jensen et al.,

2005). Briefly, 11- to 15-month-old mice of the four genotypes were placed one

animal per cage and numbered randomly to avoid genotype identification

during the experiment. A plastic tank 120 cm in diameter was filled with

room temperature (RT) water (23�C), which was made opaque with white

nontoxic paint. A transparent platform (8 cm 3 12 cm) was located in the

center of one of the four virtually divided quadrants and was submerged

0.5 cm below the water surface to be invisible. Distal cues were provided in

all experiments as spatial references. Mice were let swim until platform was

found or for a maximum of 60 s. Mice were allowed to rest on the platform

for 15 s between trials. In all experimental settings we utilized a video tracking

system (Ethovision; Noldus Information Technology, Leesburg, VA) to record

and analyze the swimming path, swim velocity, time taken to reach the

platform (latency), and time spent in each quadrant. The experiments were

performed at the following order: cued platform (4 sequential days), hidden

platform (4 sequential days), probe trial (1 day). The number of animals used

was 13 (WT), 12 (Igf1r+/�), 8 (AD), and 15 (AD;Igf1r+/�).

Cued Platform

For the cued version of water maze testing, the platform was located 0.5 cm

below the opaque water level but made clearly visible to the mouse by locating

a 15 cm high stick carrying a dotted flag (3 cm 3 4 cm) on the platform. The

platform location was fixed throughout the experiment. The mice were

released from four different locations around the water tank.

Hidden Platform

The platform was located at the same location used for the cued platform

experiment, 0.5 cm below the opaque water level but without the dotted

flag, to be invisible. The mice were released from four different locations

around the tank. Time of latency, swim velocity, path length, and time spent

at each quadrant were recorded.

Probe Trial

The platform was removed and the mice were allowed to swim for 40 s. The

time spent in each quadrant and in the previous platform location, number

of crossing the area where the platform was previously located, swim velocity,

and path length were recorded.

Size-Exclusion Chromatography

A Superdex 75 10/300 GL column (Cat # 17-5174-01 GE Healthcare, Uppsala

Sweden) attached to an AKTA FPLC system was used to separate Ab oligo-

mers from mouse brains. Column was calibrated using low MW calibration

kit (GE Healthcare cat # 28-4038-41). Then 250 ml 10% (w/v) mouse brain
homogenate (in PBS) was injected into the column and eluted with 50 mM

ammonium acetate (pH 8.5) at flow rate of 0.5 ml/min. Twenty 1 ml fractions

were collected, lyophilized, resuspended in 120 ml PBS and 40 ml LDS sample

buffer, boiled for 10 min, and separated on 4%–12% Bis-Tris gels as described

above.

Morphological and Postembedding Immunoelectron Microscopy

WT, Igf1r+/�, AD, and AD;Igf1r+/� mice were sacrificed at the indicated ages.

A piece of cortex from each mouse brain was fixed for 24 hr in cold 2% para-

formaldehyde and 0.25% glutaraldehyde in PBS followed by washing in PBS

and postfixed in 1% osmium tetroxide in PBS. The samples were washed in

PBS and dehydrated in graded ethanol solutions followed by propylene oxide

and embedded in Epon/Araldite mixture (Cat # 13940, Electron Microscopy

Sciences, Hatfield, PA). The polymerized resin was sectioned (70 nm) using

a diamond knife (Diatome, Hatfield, PA) and mounted on uncoated 400

mesh nickel grids (Cat# G400-Ni, Electron Microscopy Sciences) for immuno-

labeling. Antigen retrieval was performed using sodium m-periodate-saturated

aqueous solution for 10 min followed by TBS (50 mmol/l Tris–HCl, 150 mmol/l

NaCl [pH 7.4]) wash. Sections were background blocked in 3% bovine serum

albumin (BSA) in TBS for 30 min followed by an overnight incubation in primary

Ab1-42 affinity purified polyclonal rabbit antibody, which recognizes the C

terminus of the peptide (Cat # AB5078P Chemicon-Millipore, Temecula, CA)

1:50 in 1% BSA in TBS at RT. Sections were washed 3 times in TBS and

blocked in 3% BSA in TBS for 30 min followed by 2 hr incubation in protein

A conjugated to 10nm gold particles (Cat # EM PAG10 BB International,

Cardiff, UK) diluted 1:100 in 1% BSA in TBS at RT, rinsed three times in

TBS, three times in H2O, and air dried. Higher contrast was achieved with

2% uranyl acetate in 50% ethanol for 10 min and in Reynold’s lead citrate

solution (120 mmol/l sodium citrate, 25 mmol/l lead citrate [pH 12]) for

1.5 min. The specimens were studied in a Jeol 100CX electron microscope

(Jeol, Akishima, Tokyo, Japan) at 100 kV. Electron micrographs were taken

with a Mega View III CCD camera (Soft Imaging System GmbH, Muenster,

Germany) and Analysis Pro v 3.2 digital micrograph software (Soft Imaging

System GmbH). For detailed description and software for EM particle analysis,

please see Supplemental Data and http://sites.dillinlab.googlepages.com.

In Vitro Kinetic Ab Aggregation Assay

Ab1-40 peptide (10 mM in phosphate buffer: 300 mM NaCl, 50 mM Na-phos-

phate [pH 7.4]) was labeled with ThT (20 mM). Mouse brain homogenate was

sonicated for 40 min (FS60, Fisher Scientific, Pittsburg, PA), treated with

proteinase K (2h, 0.2 mg/ml), and supplemented with complete EDTA-free

protease inhibitor cocktail (cat#1836170 Roche, Basel Switzerland). Three

aliquots (100 ml each, total protein concentration of 10 mg/ml) were transferred

into a 96-well microplate (Costar black, clear bottom) for each reaction. The

plate was loaded into a Gemini SpectraMax EM fluorescence plate reader

(Molecular Devices, Sunnyvale, CA), incubated at 37�C, and fluorescence

(excitation at 440 nm, emission at 485 nm) was measured from the bottom

at 10 min intervals, with 5 s of shaking before each reading. Half-maximal

fluorescence time points (t50) were defined as the time point at which ThT

fluorescence reached the middle between pre- and postaggregation base-

lines. Fluorescence traces and t50 values represent averages of at least three

independent experiments.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and

seven figures and can be found with this article online at http://www.cell.

com/supplemental/S0092-8674(09)01426-3.
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