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Endocrine aspects of organelle stress — cell
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Organisms have to cope with an unpredictable and dynamic
environment. Itis crucial for any living being to respond to these
changes by buffering the effects on cellular homeostasis.
Failure to appropriately respond to stress can have severe
consequences for health and survival. Eukaryotic cells possess
several organelle-specific stress responses to cope with this
challenge. Besides their central role in stress resistance, these
pathways have also been shown to be important in the
regulation of proteome maintenance, development and
longevity. Intriguingly, many of these effects seem to be
controlled by only a subset of cells implying a systemic
regulation in a cell non-autonomous manner. The
understanding of the nature of this stress communication
across tissues, its mechanisms and impact, will be paramount
in understanding disease etiology and the development of
therapeutic strategies.
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Introduction

Living systems encounter an unpredictable and complex
environment. Coping with ever-changing surroundings, they
need to spend a considerable amount of their available
energy to maintain homeostasis and to minimize the effects
of stochastic events. The importance of buffering these
challenges becomes apparent when efforts to sustain the
balance fall short. An inappropriate cellular stress response
has been associated with an ever-increasing variety of dis-
eases, ranging from neurodegeneration to metabolic syn-
drome, from Alzheimer’s disease to type 2 diabetes [1-5,6°].

Given this importance for the survival and proper func-
tion of every cell, it is not surprising that mechanisms to
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respond to cellular stress evolved very early, are highly
conserved and can be found in all major evolutionary
branches [7-10]. Furthermore, eukaryotic cells possess
several organelle-specific stress responses, such as the
heat shock response (HSR) for the cytosolic compart-
ment, and the unfolded protein responses of the endo-
plasmic reticulum (ER) (UPRER) and mitochondria
(UPR™*) [11,12%,13%,14,15°,16].

Maybe surprisingly, in a range of model organisms, the
activation of these pathways can lead to substantial
increases in lifespan [17,18,19°°,20]. In addition to lon-
gevity, the phenotypes of these animals almost always
include increased stress resistance, altered metabolism, as
well as delayed reproduction and development. These
effects indicate a shift in the resource allocation strategy
of the organism to another optimum — a tradeoff be-
tween reproduction and cellular maintenance [21-23].
Interestingly, the decision to alter the cellular investment
and to delay development seems to be sensed and coor-
dinated by only a subset of cells of the organism
[19°°,24°°,25-27]. This indicates a cell non-autonomous
mechanism of transmission of stress information. Again
there seem to exist organelle specific endocrine signals to
convey the cellular compartment affected.

The notion that stress responses and cellular homeostasis
are to some degree under the regulation of cell non-
autonomous neurosecretory mechanisms, was initially
proposed for the HSR and the subject has been exten-
sively reviewed recently [28,29]. Similarly, the topic of
stress responses in general and the unfolded protein
response in particular has a rich abundance of excellent
reviews [12°,13%,15%,26]. We will therefore only briefly
summarize the basic mechanisms of the UPR™ and
UPRER and instead focus in this review on the cell
non-autonomous aspect of these two stress response path-
ways.

The unfolded protein response of the
endoplasmic reticulum

The ER is important for a wealth of cellular processes
including the folding and packaging of secretory as well as
transmembrane proteins, the maintenance of intracellular
Ca®* levels, and lipid biosynthesis [30-32]. Besides this
multitude of responsibilities, the ER is also intimately
involved in maintaining cellular homeostasis. The ER is
uniquely suited to this function because of its close
association with every other membrane structure in the
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cell, allowing the bidirectional transfer of lipids, proteins
and ions throughout the cellular compartments [33°].

In the unfolded protein response (UPRER), the ER pos-
sesses an intricate system to sense and respond to various
kinds of cellular stresses and physiological demands. Three
principle signaling pathways of the UPR®R, namely the
IRE1, PERK and ATF6 branches, are able to respond to
shifts in a range of biophysical parameters [12°,34]. For
instance, the presence of unfolded or misfolded proteins,
perturbations of membrane lipid composition, or imbal-
ances in Ca®* homeostasis are all able to strongly activate
the UPRER, These changes indicate, at a molecular level,
physiological or pathophysiological challenges that the
cell is or will be encountering [2,33°,34-36]. Examples of
these challenges include the takeover of the secretory
pathway by pathogens, the presence of disadvantageous
genetic alleles that cause chronic proteotoxic stress, or
exposure to conditions such as hypoxia, nutritional scar-
city or environmental toxins [12°,34,37,38]. Physiologi-
cally, the correct activation of the UPR®R is necessary for
proper cellular differentiation and essential for normal
development [39-48].

Subsequent to the activation of the UPRER, a number of
sophisticated mechanisms are triggered. At the transcrip-
tional level, the upregulation of UPRE® target genes, which
include ER chaperones, ER-associated degradation factors
or phospholipid biosynthesis proteins, takes place. This is
supplemented by translational attenuation, an increased
degradation of ER-associated mRNAs, the clearance of
misfolded proteins from the ER to the lysosome, as well
as activation of the protein degradation machinery [49-56].
These mechanisms aim to restore the correct protein-
folding environment by strengthening folding capacity,
reducing the protein burden and generally expanding
ER size. Furthermore, each distinct UPRER branch, and
combinations thereof, seems to be able to induce over-
lapping but divergent transcriptional responses [33°,50-
52,57-60]. For instance, the selective and combined acti-
vation of the ATF6 and IRE1 branches in HEK293 cells,
can each induce distinct transcriptional and proteomic
profiles [50]. This points to the flexibility of the UPRER
to match its response to various cellular needs, which may
vary substantially due to differences in severity and dura-
tion of the insult as well as the kind of stress and cell type
involved.

The difficult task of maintaining homeostasis in the ER,
and in the cell as a whole, is exacerbated with increasing
age. Not only does the cell face an increased burden
through the surge in damaged and misfolded proteins,
its ability to mount the appropriate stress responses
seems to be reduced [61-63]. In the model organism
Caenorhabditis elegans for instance, ER chaperones are
downregulated and the ability to induce the UPRER
diminishes with age [19°°,60,64].
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The cell non-autonomous regulation of the
unfolded protein response of the ER

While the cell autonomous regulation of the UPR®® has
been extensively studied for decades, the realization that
the UPR®® can be subject to regulatory mechanisms across
distal tissues is relatively new. Cellular differentiation or
mounting an effective immune defense represent chal-
lenges to the ER environment and activate the UPRER
strongly and extensively. While unmitigated ER stress
generally causes an initiation of UPR®R-associated apopto-
sis, the activation of apoptotic cell death under these
circumstances would be detrimental [4,12°,65-69]. There-
fore, a set of extracellular signaling cues scem to have
evolved to suppress this effect in order to prepare cells for
the upcoming challenge to ER homeostasis.

The activation of Toll-like receptors (TLR) through
exposure of low dose lipopolysaccharide, for instance,
attenuates the apoptotic response in cells undergoing
prolonged ER stress. This effect has been suggested to
promote survival in processes that involve a high level of
protein synthesis, such as a host defense response
mounted against invading pathogens [38,70,71]. Another
example is the regulation of innate immunity and activa-
tion of UPRER target genes through OCTR-1 expression
in neurons of €. elegans. Reducing the expression of the
putative octopamine G protein-coupled receptor
(OCTR-1) in a subset of neurons was able to increase
the expression of a range of UPRFR target genes in distal
tissues involved in the immune response [72°,73].

Thyroid cells exposed to thyroid-stimulating hormones rep-
resent an example in which endocrine signals can activate
expression of UPRER gene targets, apparently as a prepara-
tion for future secretory demands of the differentiating cells
[74]. Moreover, tumor cells such as murine prostate cancer
cells or mammary carcinoma cells, when subjected to toxins
known to activate the UPRER, seem able to activate the
UPRER in distal macrophages [75,76]. When exposed to the
conditioned media of stressed cells, the macrophages
showed an increased expression of UPRER target gencs
along with the initiation of secretion of tumor-promoting,
pro-inflammatory and pro-angiogenic cytokines, which
strongly suggests a role of aberrant UPRER signaling in
tumor growth and progression [75,77].

Another instance of cell non-autonomous UPRER control
became apparent through work investigating the conse-
quence of the age-dependent decline of an appropriate
UPRER activation. These experiments found that pro-
longed expression of the IRE1-pathway target XBP1ls,
even if just restricted to neuronal tissue, was sufficient to
induce UPRER chaperone expression in distal tissues
[19°°] (Figure 1a). Along with the UPRFR induction,
the animals possessed an increased lifespan and improved
stress resistance. This effect was subsequently shown to
rely on wnc-13, a mediator of small clear vesicle release
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Figure 1
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Overview of the cell non-autonomous regulation of the UPRER in Caenorhabditis elegans (a) and Mus musculus (b). (@) Upon activation of the IRE1
branch of the UPRFF, the protein oligomerizes and activates its ribonuclease domain. Activated IRE1 catalyses the excision of a small intron in the
XBP1u mRNA generating spliced XBP1s mRNA. As a consequence of the frame shift in the coding sequence, the XBP1s isoform is able to
strongly activate the UPRER transcriptional program in a cell autonomous manner. The nervous system seem to be able to transmit the ER
perturbation to other cells in the organism via an unc-13 mediated signaling event. The mechanism of this transmission such as the signaling
molecules involved, have yet to be identified. As a result of this cell non-autonomous ER stress signaling, distal tissues such as the intestine
induce the UPRER target gene expression without directly being exposed to the stress themselves. Intriguingly, the animals subjected to this
treatment possessed an improved ER stress resistance as well experienced a delay in aging. (b) In the mouse model, the selective activation of
the IRE1 branch of the UPRER causes an activation of the UPRER response though XBP1s as well. In addition to the cell autonomous induction of
UPRER target genes, expression of XBP1s in POMC neurons of the animals further suppresses the leptin-signaling blockers SOCS3 and PTP1B,
thereby improving the ability of these neurons to response to leptin in times of ER stress. Again the activation of the UPRE® in neurons is not
restricted to the nervous system itself but is communicated to distal tissues via a yet to be defined signaling mechanism. Among other tissues,
mouse hepatocytes respond to this cell non-autenomous signaling by upregulation of the UPR®" and activation of an XBP1s-dependent
postprandial transcriptional program though the activation of GalE. As a consequence of this activation the mice showed improved insulin

sensitivity, reduced endogenous glucose release and lower glycemia.

(SCVs) in neurons, further supporting the involvement of
cell non-autonomous regulation of the UPRER [19°* 78-80].
In addition to these insights in €. elegans, recent evidence in
the model system Mus musculus further underlined the
importance of cell-non autonomous ER stress signaling.
Here, the expression of XBP1s restricted to Pomc neurons
in the hypothalamus, activated the UPRER in hepatocytes
and adipocytes as well as induced metabolic changes which
rendered the animals resistant to diet-induced obesity [81°°]
(Figure 1b).

In contrast to the earlier examples, which seem to involve
the temporary modulation of stress tolerance in distinct
tissues, the latter two cases indicate a coordinated shift in
the activity of the stress response throughout an organism
and its lifetime (Figure 1). The activation of the UPRER
in this manner seems to accompany a fundamental
change in the physiological state of the animal, including
its proteome management, metabolic rate and lifespan
and therefore provides the organism with a mechanism to
respond to the presence of suboptimal genetic alleles or
unfavorable environmental conditions which chronically
disturb ER homeostasis.

While this change can be theoretically driven by a chronic
exposure to the immune response modulators such as
OCTR-1, the importance of the SCV indicates a central
role for small molecule transmitters in this regulation.
Intriguingly, this work suggests the possibility of multiple
distinct cell non-autonomous signaling mechanisms,
responding to various physiological, environmental or
pathophysiological challenges. Future research will ad-
dress whether non-cell autonomous UPRER signaling
induces a similar diversity in UPRER target activation
as the cell autonomous response can invoke.

The mitochondrial unfolded protein response
A vast majority of complex organisms rely on mitochondria
to provide most of the energy necessary for cellular function.
Crucial to this task is the electron transport chain (E'TC),
which allows the cell to generate an electrochemical gradient
across the mitochondrial membrane and to utilize the thus-
established membrane potential in the generation of ATP
[82]. The ETC consists of various protein complexes, which
are encoded by both nuclear and mitochondrial DNA [83].
While this genomic organization allows for local and imme-
diate control of mitochondrial respiration, it nevertheless
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requires the coordinated expression of both genomes to form
functional ETC complexes [84-86].

In the mitochondrial unfolded protein response
(UPR™"), mitochondria possess a multifaceted quality
control system to sense and respond to challenges to
efficient mitochondrial function. The existence of the
UPR™'" was first observed in experiments exposing cells
to ethidium bromide. Besides depleting the mitochon-
drial genome, the treatment further induced the expres-
sion of a set of chaperones located specifically in
mitochondria [87]. Subsequent work showed that a simi-
lar genetic program can be induced by the expression of a
misfolded version of ornithine transcarbamylase, which
causes the protein to accumulate in the mitochondrial
matrix [88].

Besides the maintenance of the correct mitochondrial
protein folding environment, the UPR™" seems also
responsible for monitoring the efficient E'T'C function.
Challenges to the mito-nuclear balance of ET'C compo-
nents, such as reducing the expression of several nuclear-
encoded mitochondrial ETC components via RNAi or
interfering with mitochondrial ribosomal function, cause
a strong activation of the UPR™™ [89,90,91°°]. Further
conditions able to induce the UPR™ include shifts in
AMP/ATP levels as well as changes in the NAD+/NADH
ratio, thereby providing a mechanism to monitor mito-
chondrial function in general [91°°,92°]. Causative to
these imbalances at cellular level could be a range of
pathophysiological conditions such as the presence of
detrimental genetic alleles, a suboptimal match between
mitochondrial and nuclear genomes or an exposure to
harmful environmental conditions. Intriguingly, in the
model organism C. élegans, the UPR™ is also involved in
the immune response triggered by microbial toxin-in-
duced inhibition of host cellular function [93].

Two mechanisms are known to enable the UPR™® to
police the mitochondrial state. First, mitochondrial im-
port efficiency is monitored through the protein ATSF-1,
which, if not imported into the mitochondrial matrix,
accumulates in the cytosol [94°°]. From there, ATSF-1
transfers to the nucleus where it induces a genetic pro-
gram characteristic to the UPR™*, a process dependent
on the transcription factors DVE-1 and UBL-5 [90,95°].
Since mitochondrial protein import is dependent on the
presence of an electro-chemical gradient across the inner
mitochondrial membrane, this provides a mechanism for
the UPR™" to assess mitochondrial function [96-98].

Alternatively, the UPR™® can be induced by peptides
generated as a consequence of stress-induced proteolytic
breakdown of mitochondrial matrix proteins by the prote-
ase ClpP [99°]. In addition to ClpP, the peptide transporter
HAF1 is essential for the activation of UPR™* targets in
this pathway, most likely by transporting peptides from the
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mitochondrial matrix to the cytosol. These peptides are

thought to activate UPR™i® target genc expression
through interaction with ATFS-1 [95°].

Once activated, the UPR™® induces the expression of
several genes important in reestablishing mitochondrial
homeostasis such as mitochondria-specific chaperones,
components of the mitochondrial protein import machin-
ery, elements of the proteosomal-degradation system and
subunits of the E'T'C [88,94°%,100]. Additionally, some of
the components of the UPR™" transcriptional program
seem to be central for the effect of mitochondrial stress on
development, reproduction and longevity [24°°].

In a number of model organisms, mutations in genes that
affect mitochondrial function have been found to increase
the organism’s lifespan and stress resistance. Work in
C. elegans for instance, showed that reducing the expression
of several nuclear encoded mitochondrial genes by RNAi is
sufficient to extend the lifespan of the animal [101-103].
"The role of mitochondria in the longevity of organisms has
since been confirmed in the fruit fly Drosephila melanogaster
and in rodents [91°°,92°,104,105,106°°]. Furthermore, a
wide variety of mitochondrial stresses, which have the
ability to induce the UPR™", are capable of extending
organismal lifespan, including stoichiometric imbalances
in mitochondrial proteins, increased NAD+ levels or expo-
sure to mitochondria specific toxins [91°°,92°,102].

The cell non-autonomous regulation of the
mitochondrial unfolded protein response
Interestingly, not unlike cell non-autonomous UPRER
signaling, the induction of the UPR™" confined solely
to the nervous system of €. edegans is sufficient to initiate a
response throughout the entire organism. A restriction of
the knockdown of ETC subunits to neuronal tissue, for
instance, caused a lifespan extension similar to the knock-
down in the entire animal [24"°] (Figure 2). Furthermore,
this treatment induced the expression of UPR™™ target
chaperones in non-neuronal tissue independent of the
UPR™" transcriptional co-factor UBL-5 [24°*]. This
study suggests the involvement of a secreted signal
molecule coordinating the UPR™"* across tissues. While
the exact nature of this mitochondrial stress signal is yet to

be determined, a few potential candidate molecules exist
[78,107].

For example, the role of the peptide transporter HAF-1 in
the cell autonomous UPR™™ activation suggests the possi-
ble involvement of a class of mitochondrial derived peptides
(MDP), including the peptide humanin [13°,108]. Humanin
is thought to be encoded by the mitochondrial genome,
given its sequence similarities to the mitochondrial 16S
rRNA, and its absence in cells depleted of mtDNA [109].
Interestingly, it has been shown to be stress responsive and
to possess cytoprotective properties in an Alzheimer’s
disease model [110,111]. Nonetheless, it has yet to be
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Figure 2
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Current model of the cell non-autonomous regulation of the mitochondrial Unfolded Protein Response (UPR™) in Caenorhabditis elegans. Several
mitochondrial perturbations such as a mito-nuclear protein imbalance of ETC components or the presence of misfolded proteins are able to
efficiently induce the UPR™° in a cell autonomous manner. For instance, when unfolded or misfolded proteins accumulate in the mitochondrial
matrix, the protease CLPP-1 cleaves the proteins into peptides which subsequently are transported into the cytoplasma via the transporter HAF-1.
This causes an inhibition of mitochondrial protein import and consequently to a reduction in the mitochondrial import of the transcription factor
ATFS-1. As a result, ATSF-1 translocates to the nucleus, where it is able to activate the transcriptional response of the UPR™ through interaction
with the proteins UBL-5 and DVE-1. Intriguingly, the selective induction of the UPR™ in the nervous system can be signaled to distal tissues of
the animal. As a result of this cell non-autonomous ER stress signaling, UPR™!° target gene expression is induced and the lifespan of the animals
in increased. The exact mechanism of the transmission of the stress signal, such as the signaling molecules involved is unknown, yet several

candidates exist.

functionally connected to the UPR™ or the global
regulation of the mitochondrial stress response.

Another putative example of a cell non-autonomous stress
signal molecule is FGF21. Transgenic mice, engineered
to possess autophagy-deficient skeletal muscle cells,
exhibited extensive mitochondrial dysfunction in their mus-
cle tissue [112°°]. This generated an increased expression of
the signaling molecule FGF21 as well as an increase in
FGF21 plasma concentrations in the animals. The observa-
tion that a similar FGF21 expression change is seen in
C2C12 myotubes exposed to drugs inhibiting E'T'C function,
and that patients suffering from mitochondrial ETC defi-
ciencies also show increased FGF21 levels in their blood
plasma, further strengthened the connection of mitochon-
drial dysfunction with FGF21 release [112°°,113,114]. In
addition to muscle atrophy and significantly reduced white
adipose tissue (WA'T) mass, the transgenic mice exhibited a
range of beneficial phenotypes including a resistance to diet-
induced obesity and improved insulin-resistance [112°°].
Similar increases in FGF21 expression, blood plasma levels
and resistance to diet-induced obesity was observed when
the autophagy-deficiency was targeted to the liver of the

mice instead of the muscle tissue [112°°]. These results
position FGF21 as a potential metabolic regulator and
mitochondrial stress signaling molecule. Further research
will show to what degree FGF21 is able to modulate UPR™*
or to coordinate the mitochondrial stress response at an
organismal level, as for instance, E'T'C perturbation in neu-
ronal tissue of €. elegans is able to achieve [24°°].

Conclusion

Research on the UPRER and UPR™® have yielded a
wealth of exciting and promising results, providing the
scientific community with an intricate understanding of
how cells respond to challenges to homeostasis. The
study of cell non-autonomous aspects of these mecha-
nisms promises to extend our knowledge to the whole-
organismal level, on how organisms adapt to homeostatic
fluctuations, coordinate the stress response across tissues
or cope with chronic proteotoxic and environmental
challenges. Many questions remain to be answered, in-
cluding the exact nature of the signaling molecules in-
volved, their beneficial and detrimental effects in general
as well as specifically to each tissue, and the extent of
conservation across evolutionary boundaries.
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While undoubtedly increasing the complexity of an al-
ready intricate subject, understanding the cell non-auton-
omous aspects of stress signaling may allow a regulation of
the impact of cellular stress and its subsequent protective
responses. And, given the involvement of aberrant stress
responses in a host of severe diseases, these insights will
almost certainly be valuable [1-5,6°,115-117].
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